

Plymouth Fury

Plymouth writes finis to fins, but can still show its tail to other cars

by Chuck Nerpel, Technical Editor

FURY'S IMPROVED SHOCKS AND FIRM SUSPENSION KEEP WHEELS ON GROUND AND BODY LEVEL, EVEN ON ROUGH BACK-COUNTRY ROADS.

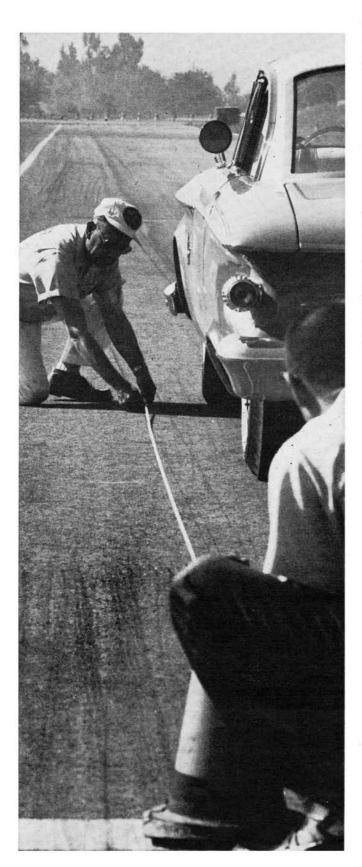
DE-FINNED BUT NOT DE-FANGED, might be the most graphic description of the 1961 Plymouth. Extensive styling changes have eliminated the tail fins and smoothed out the entire body line and shape, and an impressive array of engine option packages for the 361-cubic-inch and the 383-cubic-inch V-8's—all in the over-300-hp bracket—are available for those who like to go. On the more modest side, an economy 225-cubic-inch slant six rated at 145 hp, and a 318-cubic-inch V-8 regular fuel 230-hp engine (with options to boost its hp to 260) are offered as high-performance but fuel-efficient powerplants to round out one of the largest selection of engine packages ever offered by Plymouth.

Plymouth's West Coast assembly plant, source of MOTOR LIFE'S test car, was turning out the most popular customer demand packages first, leaving the super-hot jobs to be assembled on special order after the first production surge was over. A good seller in previous years, the two-door hardtop Fury with Golden Commando 361-cubic-inch engine package was selected for test both from a popularity and availability standpoint.

Styling changes have been extensive, notably the elimination of the fins. Some will probably mourn their passing as Plymouth sales actually convinced more than a few buyers that the relatively small areas of sheet metal sticking up at the terminus of each rear fender stabilize the car at speed. Those fins might have some effect on a vehicle weighing as much as an automobile, were the speeds in the 200-mph range, but you don't have to know much about elementary aerodynamics to realize that such small areas could not correct the effects of crosswinds acting against the large slab-sided body panels.

Pod-type stop and tail lights, unique but not new, are treated in a novel manner and fit well into the general design of the recessed fender skirt where the rear deck side edge creates a slight side overhang.

Excellent traction and positive steering allow effective use of high horsepower for hill climbing, fast curves, highway cruising.

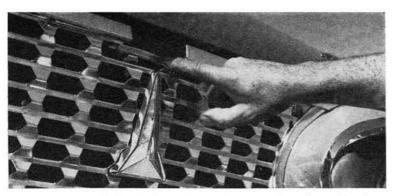

January, 1961

If we may venture a personal opinion on styling, a subject that is mostly a matter of personal taste, we like the new rear end design. Some of the XNR influence seems to be injected into the rear deck treatment by the use of an anodized aluminum trim panel to break up the wide expanse of rear deck lid. Again, in our opinion, much better than a phony spare tire cover. Side trim and other seemingly unnecessary chrome has been kept to a minimum. This year stability is being achieved by "keeping the center of gravity and the center of pressure as close together as possible." These are factory quotes but are closer to what creates a stable vehicle than anything we have heard previously from Detroit.

Personally, we have always enjoyed Plymouth's level cornering and tendency to track well at high speed, even on roily road surfaces. The 1961 is even better that the '60 model, stays flatter on hard cornering, steers positively and fast (power steering ratio of 3.5 turns lock-to-lock), and goes like crazy from standing starts through the gears of the three-speed automatic transmission, or for extra bursts of passing speed in the 60-mph-plus range.

The Golden Commando 361-cubic-inch engine option on our test car, rated at 305 hp @ 4800 rpm might be termed a connecting link in the powerplant selection between the standard Fury V-800, 318-cubic-inch 230-hp engine and the big 383-cubic-inch models with twin four-barrel carbs rated at 330 hp at 4800 rpm.

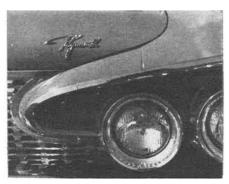
Plymouth Fury

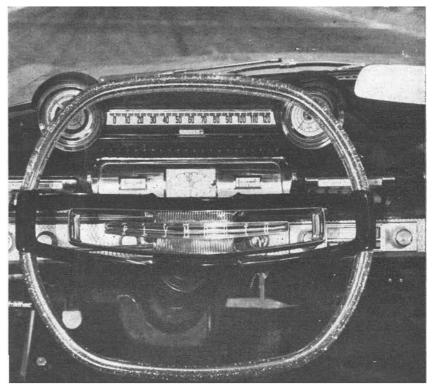

continued

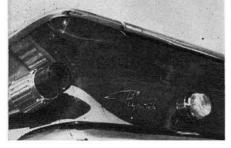
The dual low-restriction exhaust and muffler system on our test car, which is part of the Golden Commando option package, emits a pleasing but legal tone under hard acceleration. The engine winds to 4750 rpm at full throttle in first gear, which is 42 mph; the automatic gearbox shifts with little lag into second and the engine winds out to the same rpm and 74 mph before the transmission shifts to high gear. With the stock 3.31-to-1 rear axle ratio and 8.00 x 14 tires, top gear speed is 22.5 mph per thousand engine rpm's. We were in the quarter-mile just 16.8 seconds, clocking 84 mph through the traps, and the engine was just coming on strong after the shift from second to high. Passing speeds with full throttle or manual downshift from high to second are rapid, with 45 to 60 mph clocked at 3.2 seconds.

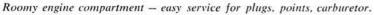
Riverside International Raceways, where Motor Life conducts instrumentation testing such as acceleration and stopping distances, offers a challenge to most cars with its nine turns and mile-long straight, but it is a fairly level course — and after all, Detroit sedans as delivered are really not road racing machines. One of our favorite test routes is through the San Gorgonio mountain range, not the highest but one of the most rugged hunks of rock to stick up nearly 6000 feet above the southwest desert. Week day traffic is practically nonexistent on the winding, climbing stretches of smooth blacktop built along the rims of sheer cliffs and through the canyons of these mountains, so there is plenty of room to drive without danger to or hindrance from sight-seeing motorists.

This type of road not only provides a good handling challenge but is also a test of both brakes and the braking ability of various types of transmissions. As we all know, or should know, one of the best routes to disaster is the panic stop, or attempt at same when the car is out of shape and the front wheels are turned. Slowing for corners should be done before, not during the act of turning, but there are emergency situations in everyday motoring, and cases of inexperience on the part of some drivers where the immediate reaction to anything unusual is to hit the brakes. It is surprising how many motorists actually pull off this stunt without damage or injury, mainly because their brakes work uniformly. Plymouth's 11-inch drums and total-contact molded, bonded linings offer good braking under conditions of repeated use with very little fade noticeable with the power-assisted braking system. However, pushbutton selection for the three-speed Torque-Flite transmission is so easy to use and provides such immediate downshift response, that it can be used effectively for downhill deceleration, prolonging the life of the braking system.

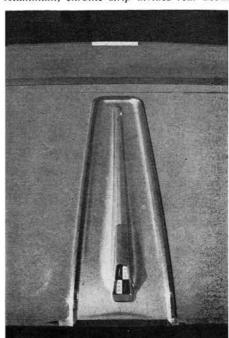

Extensive minor improvements on the unibody construction used by Plymouth give the whole car a quieter, more solid feeling. Door closures on the two-door hardtop fit better than on previous models, and the support between floor and rear side support for the panels solidify the latching mechanism in this pillarless area. Repeated driving on corduroy surfaces of unpaved back country roads did not reveal any thumps, rattles or squeaks that may be there but


Hood latch concealed behind hinged trap door in grille picks up heat from radiator, gets hot enough to make bare-handed opening a painful operation.


Luggage compartment—wide, long, deep—has good usable space, flat-mounted spare.


Slanted "V" sections house dual headlights, extend into grille, emphasize hood length.

Deluxe steering wheel is nearly square with flattened top and bottom an aid to forward vision, entry and exit. Ribbon speedometer above the cowl is easy to see.



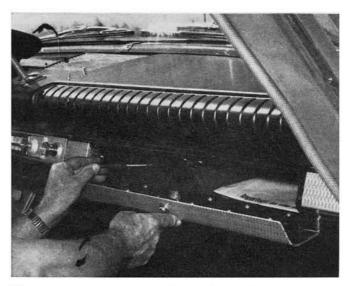
Combination stop, turn and tail light, outboard-mounted in chromed streamlined pod.

Aluminum, chrome strip divides rear deck.

continued

go undetected when driving on smooth highways. Also impressive are the improved shocks, as we were able to get good bite with the rear wheels, while climbing rough steep grades, allowing full use of available power without wheel hop or judder.

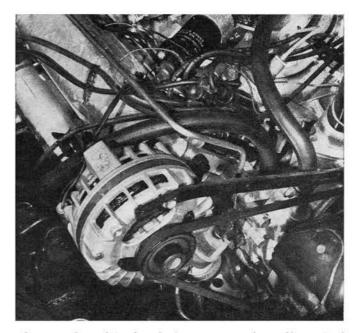
Steering with the fast-ratio power unit has undergone some desirable changes, mainly a new method of retaining constant belt tension of the power pump. A spring-loaded idler keeps the belt tight under all conditions, keeps pump pressure at proper operating level and eliminates the once-familiar squeal when the wheels were turned to their maximum limits. Manual steering is somewhat slower than the tested power option, requiring 5.45 turns lock-to-lock but only slightly more effort even when the car is standing still. A vibration dampener composed of a wafer of thick resilient material, isolates the wheel end of the steering column shaft from the steering box itself.


Plymouth is really putting a great deal of effort into overall improvements aimed at stretching the time between normal adjustments necessary for efficient performance. The alternator, replacing standard generator, keeps the battery up even at idle speeds, does not require adjustment or need to worry about worn or arcing brushes, and in its aluminum case is lighter and runs cooler than a generator. The distributor has an aluminum housing, and a long-wearing nylon breaker point rub block reduces wear at this point, keeping the point gap in adjustment for longer periods. A generous disposable filter in the fuel line between pump and carburetor, and a neoprene needle seat in the float system, insure clean fuel and reduction of carburetor flooding problems caused by minute particles of scale blocking the float bowl fuel cutoff.

Quality control is generally good on the 1961's but quality is as much a function of design as it is of workmanship. Design requiring the precision fitting of window frames, a time-consuming operation, is going to result in some mighty sharp edges if the production line assembler is not given the time to properly complete the job. We noticed razor sharp edges on the upper rear window frame joint of the front windows, a natural for catching sleeves or skin. A little work with a fine file solved the problem, and the factory is aware of the necessity to smooth out this point.

The Fury's high-backed driver's seat, square wheel, and instrument cluster give a real "control room" atmosphere to the driver's compartment. The flat wheel needs getting used to, especially in parking, but under normal highway and traffic driving most turns can be made without changing hand position on the wheel rim. Cowl is low-reflection dull black which cuts light "bounce-back" to the driver's eyes — more than we can say for the gold-speckled transparent plastic wheel rim that becomes alive with dancing light when the overhead sun hits it.

Fuel consumption is very close to what we logged on the 1960 Golden Commando. Premium grade is required for the 9.0-to-1 compression ratio, and it will take a gallon of it for every 15.8 miles at cruising speeds in the 65-to-75 mph range. In town, mileage will depend on how heavy your throttle foot or strong your resistance to use the shove-you-back in-the-seat acceleration away from traffic signals. Normal city driving should give about 12.5 mpg for the faint-hearted, 11.0 for the charger.


We like the new Plymouth, not only the ride, style and handling but the wide selection of powerplants available for either economy or speed — and some in between that hit a happy medium of both.

Glove compartments seem to be shrinking as heater, ventilator and wiper components are shoved out of the engine compartment and into the under-cowl area. Door is large but space is small.

Long, low hood line and sweptback windshield with thin corner posts provide excellent forward vision, and ease driving strain.

Alternator housed in finned aluminum case has self-contained rectifiers, charges battery even when engine is at idle speed. Other advantages are low maintenance, light engine power drag.

PLYMOUTH FURY

2-door hardtop, 6-passenger

OPTIONS ON CAR TESTED: Golden Commando engine package, Torque-Flite transmission, power steering and brakes, radio, heater.

ODOMETER READING AT START OF TEST: 542.6 miles

PERFORMANCE

Acceleration (2 aboard)

 0-30 mph
 3.8 secs.

 0-45 mph
 6.1

 0-60 mph
 9.3

Standing start 1/4-mile...... 16.8 secs. and 84 mph

Speeds in gears @ 4750 rpm

Speedometer Error on Test Car

 Car's speedometer reading . . . 32
 48
 58
 65
 75
 88

 Weston electric speedometer . . 30
 45
 50
 60
 70
 80

Miles per hour per 1000 rpm in top gear (Tires 8.00 x 14) 22.5 mph

Stopping Distances — from 30 mph, 32 ft. from 60 mph, 157 ft.

SPECIFICATIONS FROM MANUFACTURER

Engine

V-8 ohv Bore: 4.12 ins. Stroke: 3.38 ins. Displacement: 361 cu. ins. Horsepower: 305 @ 4800 rpm Compression ratio: 9.0:1 Ignition: 12-volt, battery/coil

Gearbox

Torque converter with gears, 3-speed, pushbutton selector

Driveshaft

Open with U-joint at each end

Differential

Hypoid differential Standard ratio 3.31:1

Suspension

Front: Independent lateral non-parallel control arms with torsion bars

Wheels and tires

Pressed steel disc 14-inch wheels 8.00 x 14 tubeless tires

Brakes

Drum type, total contact molded linings Front and rear: 11-in. diameter with 2-in. lining width

Body and Frame

Unibody, integral welded construction Wheelbase 118.0 ins. Track, front 60.9 ins., rear 59.7 ins. Overall length 209.5 ins.

Rear: Solid axle, outboard longitudinal leaf springs